
Card Tricks: A Workflow for Scalability and Dynamic Content
Creation Using Paper2D and Unreal Engine 4

Extended Abstract

Owen Gottlieb
Rochester Institute of Technology

Rochester, NY
oagigm@rit.edu

Dakota Herold
Rochester Institute of Technology

Rochester, NY
dxh8497@rit.edu

Edward Amidon
Rochester Institute of Technology

Rochester, NY
eha8618@rit.edu

ABSTRACT
In this paper, we describe the design and technological methods of
our dynamic sprite system in Lost & Found, a table-top-to-mobile
card game designed to improve literacy regarding prosocial
aspects of religious legal systems, specifically, collaboration and
cooperation. Harnessing the capabilities of Unreal Engine’s
Paper2D system, we created a dynamic content creation pipeline
that empowered our game designers so that they could rapidly
iterate on the game’s systems and balance externally from the
engine. Utilizing the Unreal Blueprint component system we were
also able to modularize each actor during runtime as data may be
changed. The technological approach behind Lost & Found uses
Unreal Engine and Paper2D in order to maximize scalability and
dynamic content creation. We believe our methods will be useful
for any developer with large volumes of data, intensive procedural
content in their game, or those who would like to improve their
workflow when working with dynamic data.

Keywords
Games and Learning, Scalability, Dynamic Content Generation,
Unreal Engine, Paper2D

1 INTRODUCTION

The ability to modify game elements is critical for designers, so
designers must often build modular systems with this modification
criterion in mind. Given the ever-increasing demands for content
volume and change, developers must find new ways to create and
scale content. Over the course of the production of Lost & Found
we created a workflow in and around Unreal Engine 4 to meet the
content needs of our game. In doing so, we believe that we have
found ways to take advantage of the Paper2D system that will
allow other designers with related goals to also create effective
dynamic data-oriented systems that facilitate developer-generated
content. This method can work for both porting completed card
games to mobile and also for iterative design of mobile-based card
games. The value in terms of iteration can be seen in
circumstances such as re-balancing a game.

As mobile games shift and advance based on user feedback and
testing, this method can allow for fast-response content
generation. We first provide an overview of the game to provide

specific context. In the sections that follow, we provide a
description of each component of our system, how each
component relates to our architecture, problems we faced with
each component, our solutions, and suggest how these solutions
might be applied by other developers and designers for related
systems.

2 GAME OVERVIEW
Lost & Found is a digital mobile prototype (funded by the
National Endowment for the Humanities) of a card game that
teaches medieval religious legal systems, beginning with
Maimonides’ Mishneh Torah, with plans to expand to related
contemporaneous Islamic law. The game is set in Fustat (Old
Cairo) in the 12th Century with attention to historical detail and
accuracy. Players must balance the needs of their family with
those of the community, and the game explores collaborative, oft-
overlooked prosocial aspects of religious legal systems. The
overall learning goal of the game is to widen discourse around
comparative religion through understanding legal history. The
game progresses across the four seasons of the year, in which each
season contains events that help or threaten the community. The
events revolve around the laws in the Mishneh Torah regarding
lost and found objects. In order to win, players must learn to work
together to complete “communal” responsibilities while
attempting to simultaneously complete a set of individual
“family” responsibilities. Players choose how to help themselves
and others, making for a unique dynamic, resulting in either a win
of any number of players, a no-win state or a communal loss.
Communal loss state is triggered by any player going “destitute”
during the game, when they face a resource deficit so high that
they cannot complete their turn. The game contains a variety of
kinds of decks of cards such as events, resources, and lost
resources. Each deck has a set of values and various effects on
gameplay. The task of translating the card game to mobile
presents unique challenges for this method.

3 DATA CREATION FOR ACTORS: FROM
SPREADSHEET TO ENGINE

In the early stages of planning for Lost & Found, we sought to
design a system that organized data in a way that would be
convenient to both read and manipulate. This was important,
because the game contains 164 cards and we also had to adhere to

 O. Gottlieb et al.

2

the various platform constraints of mobile. Even though there are
many variations of cards, we define a “card” as singular piece of
data with a set of key-value pairs. Keys are different fields such as
“name, type, and owner.” Values are the information associated
with that key such as “Garment, Starting Resource, and
Cowherd.” An “actor” is an Unreal Engine term for an object that
can be placed or spawned in a level[1]. The game designers used
an excel spreadsheet to organize all of the information for each of
the cards in the game. Maintaining use of the spreadsheet was
important for the designers because it was the most efficient way
for them to allow for editing and iteration on the cards in future
versions. The technical advantages of using a spreadsheet include
that it is particularly helpful for serialization in the way that we
described a “card” above.

The choice of Unreal Engine was determined by a number of
criteria, including: it would deploy to both iOS and Android
natively, it has robust built-in networking capabilities, and
perhaps most importantly, that the pro-licensing EULA was
within the project budget. Once Unreal Engine was locked in, we
would have to develop a pipeline for it. We believe others will
find themselves facing similar cost and capability constraints, and
therefore can benefit from this workflow.

We designed a solution that would allow designers dexterity in
manipulation of the card data that feeds into the game. While
Unreal supports CSV and JSON importation, types must be
predefined through a data table within the engine. This was not
suitable, because we needed a system that could handle changing
data types at the discretion of the designers. We achieved this
through the use of an external card parsing tool we developed in
C#. We output our data from this tool in two formats, JSON for
debugging our parser and a CPP file that contained a TCHAR
array for use in C++ [3]. This tool allowed for our entire
spreadsheet to be encapsulated in a single, lightweight class that
accounted for changing types and could easily be reverted to
JSON for validation. This process could be repeated in a few
clicks for trivial manipulation and iteration on the cards in the
spreadsheet.

Using the translated data from the parser tool, we could then
recreate the JSON objects that the engine could understand. From
this point, we expanded on the serialization structure. We
organized the cards into arrays inside the parser through
formatting. In this way, we sorted the cards into decks and
differentiated them by type. Even though the engine could
understand both the data and how it was organized, we still had to
store serialized card data in a data structure that Unreal used. A
UObject is the most basic class that can be represented inside of
Unreal. Inside of each UObject we created for each card, we
assigned properties which come from the JSON data itself;
however these remained dynamic through the use of unions.

Once the data was a UObject, we could output information from
each card (such as names) to the screen as debug output, in the

engine. Another technique we used, which would help us later
was serializing the image names. We did this because we needed a
way to know which image was needed for each card. Using the
properties in the card allowed us to subsequently build the visual
representations of the cards using sprites in Blueprint. “Blueprint”
is a visual scripting system in Unreal that contains almost all of
the functionality of Unreal’s version of C++. An important
exception would be attempting to inherit from a Blueprint class to
a C++ class [2]. Parsing the data into a UObject built a basic
object with properties that designers, programmers, and the engine
could easily understand. Having access to this data at each stage
of the pipeline, from spreadsheet to JSON to UObject, allowed us
both more flexibility as well as the ability to constantly check for
errors.

As we designed this workflow, we always focused on where the
data was going as well as how we could streamline and simplify
the process for others who would join the project so that they
could understand how to make changes. For designers working in
card or other strategy games using data from spreadsheets, this
conversion method can be particularly helpful because it
decouples design, balance, and iteration from direct programming
implementation. In later sections, we expand on how we use our
UObject to begin creating actors that would be visible in the scene
that could be changed in C++ and Blueprint.

4 PAPER2D: UNDERSTANDING THE SPRITE
SYSTEM FOR UNREAL ENGINE

Paper2D is a plug-in that is packaged with the Unreal Engine. It is
the primary sprite system used for creating 2D games in Unreal.
The system is intuitive to learn and can translate imported images
into sprites through simple drag and drop. In order to understand
how we assemble the cards from our data, it is important to first
highlight the plug-in itself by explaining its benefits and
drawbacks in the context of this project. For the context of this
section, an “assembled card” refers to a group of sprites
containing all of the images that make up a card. See Figure 3.

Because this project is targeted for mobile devices, the default
importation of images resulted in sprites that were uncompressed;
while this provides high quality images, the file sizes were too
large given our platform. In order to address this issue, we
compressed the raw images into sprite sheets and imported the
sheets instead. This reduced the overall file size by half from
30MB uncompressed to 15MB and maintained an acceptable
quality. This was critical given the 307 images in the game and
their centrality and importance in the game. Using this workflow,
when we received a new piece of art from the illustrators, we had
to reimport the entire sprite sheet as opposed to simply loading in
just the new sprite. This is the case because we were using the
packed atlases. While time consuming, this approach provided
greater benefits than using the uncompressed images when
comparing executable file sizes. The executable with packed
images from TexturePacker was considerably smaller, which is
critical for mobile app stores. Another benefit of Paper2D is that it

 O. Gottlieb et al.

 3

includes a great deal of compression and image optimization
functionality. This was most important in Lost & Found when
trying to sharpen the UI sprites in the game. Changing the import
settings on the sprite to ‘UI’ made those sprites render far more
sharply than before. Because those sprites were constantly on-
screen, the overhead in rendering them was negligible compared
to when we tried rendering assembled cards as UI sprites. While
we found this feature of Paper2D beneficial for user interface
sprites, it was not useful for the cards themselves because UI
sprites are always in the front of the rendering queue. The fact that
those sprites are always in the front of the queue caused visual
problems to the player when cards had to overlap. Therefore, we
needed a new solution to account for the complexity of rendering
assembled cards on screen.

One challenge we faced with Paper2D was the rendering
complexity of assembled cards. Because Unreal Engine is
primarily a 3D engine, its material system is focused on 3D
meshes. A material can be best thought of as the “paint” that is
applied to a mesh. Even though we are not using 3D objects,
Paper2D includes default materials for sprites. The default
materials were used without problems, but only until we added
card back sprites to the cards. Then each sprite on the front of the
card continued to render on the back, but then, the player could
see sprites reversed when cards were flipped on the vertical axis.
It also doubled the required rendering cost as sprites only need to
be seen from one direction which is when they are facing the
camera. We solved this problem by writing a material shader that
only rendered sprites on one side facing the camera which cut the
rendering load in half (by only showing what was immediately
visible to the player). This solution provided noticeable
performance improvements in game in terms of play speed. The
front and back sides of our material can be seen in Figure 2 and
Figure 2.1. Outside of this one issue, Paper2D caused us no
problems in terms of image quality or performance. Importing
sprite sheets and swapping sprites during runtime was clean.
Paper2D is lightweight and provided enough flexibility to load
each piece of a card in, rather than a single flat image. Working
with Paper2D can allow for an extensible 2D sprite system that
we found helpful in adapting to various design needs.

Figure 2: Front side of our card material.

Figure 2.1: Back side of our card material.

5 AUTOMATED ACTOR GENERATION: THE
DESIGN AND IMPLEMENTATION OF
CARDBP

Often in games, that which is procedurally generated are game
environments. These environments have limited player
interaction. In our case, we designed procedurally generated
objects with which the player continually interacts. Here, we
describe how we procedurally generated our card actors.

Upon designing and translating the spreadsheet data into an
engine readable object, we had to design a system that could
translate that data into an actor in the scene. This section describes
how we melded card data and sprite images into a cohesive entity.
We began by extending the card UObject that we created from our
data earlier to an actor class in C++ that contained all of the
variables from our data. Because it is beneficial to visually see the
cards while we’re working with them, we further extended our
card actor class to a Blueprint which we named CardBP. All of
our gameplay scripting for transforming cards is also handled by
CardBP. This allowed us to rotate, resize, and linearly interpolate
CardBPs in the scene during the game.

CardBP holds a reference to the card data as well as Paper2D
component sprite slots. Each card in the game has a basic set of
properties that fill these slots such as a frame, background image,
category, cost, and card background image. The images are stored
and imported into the engine separately, although the card data
contains all of the image names. However, CardBP also contains
all of the possible specific sprite slots that may be needed by a
card regardless of whether or not that card uses that slot.
Examples include, “BonusToCategory,” “BonusFromCategory,”
“Cost,” etc. The “Train A Doctor” community responsibility card
in Figure 3 illustrates the use of these additional sprite slots. When
a CardBP is created, all of the sprites are left blank so if the card
data indicates that CardBP does not contain those sprites, then
they are not generated. There was very little overhead for keeping
unused sprite components because there are fewer draw calls
based on the images on screen. CardBP served as the base
Blueprint class that we used to generate our dynamic cards from
the JSON data. The methods for CardBP can serve as an example
of how our workflow can serve as a model for those who would
also like to build adaptive actors inside Unreal Engine 4.

 O. Gottlieb et al.

4

Figure 3: An instance of CardBP in the editor.

5.1 Organizing the Sprites

Because Lost & Found is a table-top card game, the conversion of
the game to a digital medium meant the volume of images
required to display the 164 cards was substantial. We had to
reduce the image file sizes. Our images were delivered from our
illustrators in .PNG format and compiled into an atlas of sprites in
the TexturePacker program. The atlas file essentially tells Unreal
which section in the sprite sheet is an image, acting as a kind of
cookie cutter in a wide swath of cookie dough. Unreal then
translates each image into a Paper2D sprite, which we could use
in the game. All sprites followed a specific naming convention
and were then placed in one folder. From this point, whenever a
CardBP needed to populate a sprite component, we retrieved the
path to the folder and appended the sprite image name from the
card’s data. We then created a function in CardBP to load the
sprite asset into the component based on that path. By organizing
and creating these atlases of sprites, TexturePacker allowed us to
pull the packed images from only 4 atlases instead of 307
individual image files. This, in turn, significantly enhanced ease
of maintenance for our system.

5.2 Runtime Generation

The most flexible part of our system is runtime generation and
manipulation of Paper2D sprite components. When a CardBP is
first placed or spawned in the world, it generates all of the
required sprites based on the card’s data. CardBP then offsets
each sprite based on the type of card that the sprite represents. For
example, the value sprite on a resource card has a different
position in local space than the cost sprite on a communal
responsibility card. CardBP accounts for all of the nuanced offsets
of each type of card to best replicate the card’s print counterpart.
CardBP also does this with font styles, colors, and sizes for the
card’s text through Unreal’s text render components. We are also
able to modify and reload any of these during runtime. This is
most notable when a player pays toward the cost of a communal
responsibility, because the cost sprite on the card will decrease as
it is paid down by the players. This was particularly helpful for
players as it offloaded mental arithmetic required in the print
version of the game to the machine, taking advantage of the
mobile format. The generation of the CardBP is important as it
allows an almost instantaneous change in information shown to
the player by manipulating the card properties, and reloading the

changes to the sprites. Developers can follow this model in order
to provide real-time feedback to players.

6 CONCLUSIONS
We began this project with key game mechanic, technical, and
business requirements based on our card-strategy game. We
sought to develop a streamlined method for designers to be able to
easily manipulate the game’s data as well as a system that would
provide a manageable learning curve for onboarding new team
members – all cross-platform, and within a manageable budget.

With the primary data in spreadsheet form, we built a card parser
to transfer the data to JSON. This transfer allowed us to maintain
data manipulation functionality, as it kept the data in human-
readable format. Next, we turned the card data into a TCHAR
array which we loaded into Unreal using C++. Then we created a
UObject in C++ from the TCHAR array data in order to build a
card actor (CardBP). Leveraging Paper2D, we created a material
shader that optimized the rendering complexity of the image
sprites used by our cards. We further optimized our images by
compressing them with TexturePacker and using atlases (as
opposed to using singular images). We were then able use
CardBP, a template, to load-in and offset sprites based on the
card’s specific data. This approach provided us with a pipeline
for dynamic content generation that was scalable and would allow
us to generate a high volume of cards with specific data. This
reduced rendering load significantly. It also allowed us to
continue to iterate data in any future variations

For developers working on data-oriented game genres such as
CCGs, TCGs, or strategy games, creating scalable solutions for
dynamic content generation is important. We believe that using
this kind of workflow, one that emphasizes the design of the data
in addition to the programming implementation, can make for an
efficient iteration cycle. We hope that providing this case
example can serve as a model for approaching data, one that will
facilitate a wide variety of approaches and applications by game
developers and researchers in the future.

ACKNOWLEDGMENTS
This work is supported by the GCCIS, Office of the Vice
President for Research, and the MAGIC Center at RIT. This work
is also supported and funded by the National Endowment for the
Humanities. Any views, findings, conclusions, or
recommendations expressed in this paper do not necessarily
represent those of the National Endowment for the Humanities.

REFERENCES
[1] Unreal Engine 4 Actor

https://docs.unrealengine.com/latest/INT/Programming/Unrea
lArchitecture/Actors/

[2] C++ and Blueprints
https://docs.unrealengine.com/latest/INT/Gameplay/ClassCre
ation/CodeAndBlueprints/

[3] TCHAR typedef
https://msdn.microsoft.com/en-
us/library/office/cc842072.aspx?f=255&MSPPError=-
2147217396

