
Game and Interactive So�ware Scholarship Toolkit (GISST)
Eric Kaltman, Joseph Osborn, Noah Wardrip-Fruin, Michael Mateas

Expressive Intelligence Studio
UC Santa Cruz

Santa Cruz, California 43017-6221
ekaltman@soe.ucsc.edu

ABSTRACT
The Game and Interactive Software Scholarship Toolkit (GISST) is
a suite of tools aimed at helping support and create new forms of
game studies and software studies scholarship. Digital games schol-
ars generally analyze game objects using ad-hoc methods: some
games are emulated and others are recorded as video or screen-
shots, and scholars rarely explicitly de�ne their methodologies for
working with game software (or performances employing that soft-
ware) or reference games in standardized ways. GISST supports
game scholars by providing for the creation, reference and man-
agement of games (as executable data), game performances (as
video) and game states (as frozen run-time memory from a suite of
supported emulators). GISST can ingest a variety of game studies-
related resources and reproduce them as Web documents through
its CiteState.js JavaScript library. GISST is a �rst step in a new
methodology focused on the creation of support applications for
work in game studies, software studies and game history.

KEYWORDS
citation, game studies, preservation, performance, emulation
ACM Reference format:
Eric Kaltman, Joseph Osborn, Noah Wardrip-Fruin, Michael Mateas. 2017.
Game and Interactive Software Scholarship Toolkit (GISST). In Proceedings
of International Conference on the Foundations of Digital Games, Cape Cod,
MA, USA, August 2017 (FDG ‘17), 4 pages.
DOI:

1 INTRODUCTION
In working with digital games, researchers confront an array of
technical and resource management issues that get in the way of
work. Older games require older hardware, or the re-articulation of
their data through emulation. To analyze or display parts of games
in arguments, scholars need to use a range of tools for screen cap-
ture and video recording. These issues are compounded by the
restrictions of current publication platforms and lack of standard
practices. How does one reference a game in a precise and stable
way? Where does one store videos of gameplay performance? How
does one reference and retrieve an emulated ROM? What would
be possible for games scholarship if there were an archival-quality
resource for the management of digital games and the secondary
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FDG ‘17, Cape Cod, MA, USA
© 2017 Copyright held by the owner/author(s). . . . $0.00
DOI:

artifacts incumbent to their study? The Game and Interactive Soft-
ware Scholarship Toolkit (GISST) is a suite of tools which facilitates
the organization, reference, analysis, and retrieval of games, game
performances (video), and game executable states (emulated save
states), and moreover provides for their inclusion in digital publica-
tions. This is a �rst step towards better platforms for the citation
and retrieval of games and their related documentation.

2 THE GAME AND INTERACTIVE
SOFTWARE TOOLKIT

GISST works with three classes of objects: games, performances,
and executable game states.1 “Games” in this sense are collections
of data about a game concept. This includes both basic descriptive
information — required for correct bibliographic entries — and the
executable data needed to run a game. In GISST’s case, executable
data can be run in a suite of browser-based emulators. Performance
objects are records of games as played or viewed by a player or
group. These records also carry both descriptive metadata and
the viewable performance data that metadata describes. “Viewable
performance data” is either a collection of frames — GIFs or video
— representing some situated act of play, or replay data — input
stream recordings for emulators or replay �les for a speci�c game
engine. Executable game states are snapshots of a game’s run time
memory, either saved by an emulator into a "save state" �le, or
extracted directly from a system during execution. GISST manages
a database of game, performance, and game state records and can
embed executable game data or viewable performance data into
Web pages.

GISST has three primary components:
(1) A command line interface (CLI) for ingesting game and per-

formance data, generating metadata records, and managing
the reference database.

(2) CiteState.js, a JavaScript emulation interface that acts
as a wrapper for a suite of cross-compiled C-to-JavaScript
emulators.

(3) A web application (the “app”) that allows for basic search
and record viewing, along with an “Indexer” for creating
emulated game states, screenshots, and game play perfor-
mance videos.

The three components are inter-related. The CLI’s serve com-
mand launches the app and the CLI’s reference store provides stable
links for data displayed and used in the app. CiteState.js is a
major component of the app’s Indexer, which is basically a user
interface for CiteState.js’s API described below. Figure 1 illus-
trates the relationships between the components. Input resources
1The demo is available as an installable Python package and as a pre-con�gured virtual
machine at: https://github.com/gamecip/gisst

FDG ‘17, August 2017, Cape Cod, MA, USA E. Kaltman, J. Osborn, N. Wardrip-Fruin and M. Mateas

Figure 1: GISST components and pipeline.

(1) are fed to the CLI (2) which extracts their information (3) into
an extraction table (for URLs) or the citation database (for per-
formance and game data). The Web Application reads from the
citation database (4) and the Indexer uses CiteState.js to create
further citable resources (5). CiteState.js can then use those re-
sources’ permanent URLs (6) and its cite function (7) to embed an
executable program into a target HTML tag (8).

2.1 GISST Command Line Interface
GISST’s CLI is a Python script that ingests various citable resources,
maps them to a citation schema, and places them into a citation
store. There are two main commands for the CLI, cite_game and
cite_performance. cite_game draws game data and metadata
from a variety of di�erent resource types. The --file_path and
--directory �ags ingest supported game ROM �les or directories
imaged from physical media, respectively. --directory will auto-
matically search the folder for the �rst executable �le it �nds. If
this is not the game’s executable (many DOS games require instal-
lation programs to be run �rst), there is an --executable �ag that
lets the user provide the executable path. The --url �ag links the
record to information from common game informational databases
(currently, Wikipedia or MobyGames). The scraped information
can be linked to an ingested game resource to automatically �esh
out the information in the citation store (a separate extraction store
is used to capture additional metadata that is outside of general
citation needs). Furthermore, thanks to community driven data
archiving, tools already exist for validating some game �le data.
The CLI makes use of the UCon64 tool which provides checksum
validation for every known game for the Nintendo Entertainment
System (NES), Super Nintendo Entertainment System (SNES), and
Nintendo 64 (N64). cite_game’s --title �ag automatically con-
ducts a title search on the MobyGames database and presents the
user with an itemized, pre-generated listing of potential citations.

The cite_performance command uses an analogous --file_path
�ag to ingest performance videos and replay data for supported

Citation Type Supported File Types Supported URI Source
Game .NES ROM format

.SMC ROM format
Directory with a DOS
compiled executable
.z64 ROM Format

MobyGames
Wikipedia

Performance FM2 Replay format
Generic Video Files

YouTube

Table 1: CLI supported �le types.

emulators. cite_performance’s --url �ag takes YouTube video
links as inputs and maps them into the citation store. This is useful
for cases in which one wants to link the game played in an online
video to its game’s citation. The CLI’s supported resource types are
listed in Table 1.2

2.2 CiteState.js
CiteState.js is a JavaScript library which provides a front-end
to any conforming JavaScript runner program. In theory, a runner
could be any JavaScript code that renders audio and video via the
Web Audio and Canvas APIs respectively and which only adds input
event handlers to a speci�c HTML element. We currently assume
(without loss of generality) that runners come from a �xed but
extensible set of Emscripten-compiled emulators [6].3 Beyond the
constraints on input and output, we also require that runners can
be initialized with URLs pointing to speci�c game binary and saved
state resources, and that multiple instances can be run simultane-
ously. Emulators may also provide information on their emulated
systems’ memory regions and their sizes along with ways to read
data from those regions.

With a library of runners which satisfy these API requirements,
CiteState.js provides a uni�ed interface to running, pausing,
saving, loading, and recording games on a variety of platforms
given only URLs obtained from, e.g., the reference database. Existing
ports of emulation software to JavaScript via Emscripten required
modi�cation to comport with CiteState.js interface: for example,
a port might not expose its rendering canvas in an easily accessible
way, or might be set up to load arbitrary games and save states
rather than a speci�c �le reference. This was the case for existing
ports of the NES (FCEUX), SNES (SNES9x) and N64 (Mupen64Plus)
emulators [1, 3, 5]. For these ports, we altered their command-line
drivers’ arguments to look for games and save states in speci�c
virtual �lesystem locations, then wrote small JavaScript shims that
ensured the correct �les were loaded at runtime from speci�c URLs.

The DOS emulator (a port of DOSBox) posed a bigger challenge.
DOSBox does not support saving or loading system states; moreover
both the emulator and the underlying emulated system have their
own virtual �lesystems (de�ned by Emscripten and by DOSBox it-
self, respectively). We resolved the issue of saving and loading states
as follows: since the Emscripten runtime is made of JavaScript ob-
jects and byte arrays, we save a state by copying out the byte arrays
representing the heap along with the interpreter’s bytecode stack
2FM2 replay �les and .z64 ROMs are ingestible but not fully supported in the app.
3Emscripten is a Mozilla Foundation supported compiler that allows for the compilation
of C programs into JavaScript.

Game and Interactive So�ware Scholarship Toolkit FDG ‘17, August 2017, Cape Cod, MA, USA

(unlike the other emulators, DOSBox requires an interpreter as well
as the regular Emscripten runtime). Loading comprises restoring
that heap and stack and resetting the system clock appropriately.
This approach would work for any Emscripten-based runner that
does not support savestates — meaning that any C program compi-
lable by Emscripten could potentially make use of the technique,
not just emulators.

There was, however, an additional wrinkle: the �lesystem. Be-
cause a DOS game might write to the emulated �lesystem, and this
exists outside of the running program’s memory, therefore GISST
copies out the �lesystem state along with saved game states. This
added addition overhead, requiring compression and tracking of
�les linked to each saved game state.

Because CiteState.js puts strong requirements on the runners’
input and output modalities, it can seamlessly record gameplay
video and timed input sequences. Full recordings of audio and video
are large and unwieldy, so CiteState.js includes an MP4 encoder
(an Emscripten build of libav, a fork of FFMPEG). This encoding
is done in a separate worker thread to maintain interactive play.

2.3 GISST Web Application
The GISST Web Application provides for the in-browser manage-
ment of the citation database, as well as the creation of new game
performance videos, GIF video segments, and emulator save states.
The web application consists of a Python backend linking to the ci-
tation store created by the CLI and a JavaScript UI application. The
UI application provides for full-text search of stored citations, a full
listing of the citation store’s current contents, individual pages for
each stored citation, and a wrapper tool for CiteState.js called
the Indexer. As described in the last section, CiteState.js provides
an API for generating various performance and internal resources
for supported games. However, CiteState.js does not provide
persistent storage or management of the data it produces. The In-
dexer embeds CiteState.js into a UI frame with user-friendly
controls for CiteState.js’s various API functions. As shown in
Figure 2, the Indexer provides both a single view of a game in the
citation database and a comparative, simultaneous view of up to
six concurrent emulated games. Users can save a state at any time,
record video, and reload previously recorded performances and
states.

Indexer takes the outputs of CiteState.js’s API functions, com-
presses them (in the case of video and DOSBox �lesystem states),
and uploads them to a server spawned by the CLI’s serve command.
Once uploaded, the video or save state data is stored in the cita-
tion database and made available as static links for CiteState.js.
The Indexer automatically handles the creation of links between
recorded game performances and save states.

Each video is automatically bookended with state saves to allow
future users to continue (or create alternatives to) previous per-
formances. If any states are saved during recording, the Indexer
will automatically link those save states to their timestamps in
the performance video. This allows a future user to jump into the
performance recording at particularly salient points saved by an
earlier researcher. Additionally if, while recording a performance,
a new save state is loaded, the current performance is ended and a
new, derived performance is started. Chains of derivation can be

used to reveal alternate pathways through a game, or to show a
variety of comparative gameplay actions at a speci�cally indexed
point.

3 USE CASES
GISST’s tools provide prototypical support for numerous common
game analysis tasks that previously required ad-hoc and usually
undocumented approaches. The system operates on explicit records
of each game, performance, and game state, linking them to each
other and tracking new derivative records created by users. It also
provides the potential for shareable, stable links to emulated games
that obviate the need for individual scholars to manage the technical
complexity of running games in emulation and ensuring that future
readers as always looking at the same articulation of an emulated
game’s data. This section highlights some basic use cases for GISST
and how they support new analytical territory for game studies.
For more extensive use case discussion please refer to [4].

3.1 Reference Creation and Sharing
One use for GISST is in the analysis of historical game titles sup-
ported by CiteState.js. For instance, one could extract the ROM
data from a NES cartridge, say Super Mario Bros., or download it
from an enthusiast website (or in a hypothetical future, from a
digital repository of game studies resources). In order to reference
a speci�c location in the game, like “World 1-1”, a scholar can use
the CLI to run a cite_game command providing the ROM �le as
input. For example:

gisst cite_game --file_path super_mario.nes
The CLI uses the UCon64 ROM validation program to initially

label the ROM data, and then allows the scholar to modify the
record with additional information. To run the game, the user calls
the CLI’s serve command to start the app, which can then be
loaded in a local web browser. From there, clicking on the game’s
listing will load it into the Indexer. The “Start Emulation” button
will automatically load up the game in an in-browser window. The
scholar can then start the game and then press the “Start Recording”
button to begin a video recording of “World 1-1”. Upon starting
the recording, the Indexer will call CiteState.js’s saveState
function, which returns a save state �le generated by the underlying
FCEUX emulation instance. The Indexer will link this �le to both
the game’s record — created by the cite_game function — and as
the beginning state of the current video recording. When �nished
with the level, the scholar can “Stop Recording,” which will again let
the Indexer save and link the closing state of the recording. In this
example, the system has indexed and created explicit references
to the Super Mario Bros. game data (ROM �le), two saved game
states (FCEUX save state �les), and a video recording of “World 1-1”
(as an MPEG-4 video �le), all without the need to run more than
two command line functions. We are currently developing ways to
ingest these �les through the browser interface, reducing the need
for external CLI steps.

Since each referenced resource is stored at a stable, locally web-
accessible URL, each item created in the last paragraph can be in-
serted directly into a standard web-page by including the CiteState.js
library and writing a one-line JavaScript function — (7) in Figure 1.

FDG ‘17, August 2017, Cape Cod, MA, USA E. Kaltman, J. Osborn, N. Wardrip-Fruin and M. Mateas

Figure 2: Two versions of the Indexer UI. Left: Single game Indexer with program window, saved state listing, and view of
previously recorded performance. Right: Comparative view with multiple selectors for input streams and sound.

3.2 Uni�ed Game Reference Database
GISST’s division between the app and CLI-managed server is in-
tended to prototype a future in which a separate, veri�ed database
of GISST references can exist and be shared amongst researchers.
One scholar working on a speci�c title could search and recall spe-
ci�c in-game locations or videos of gameplay segments and then
embed them in their work with assurance of its recovery by readers.
Present game citation practices are underdeveloped, and it is hoped
that GISST will prod further discussion of the preferred means for
sharing and citing game references.

3.3 Comparative Analysis
As shown on the right side of Figure 2 the Indexer supports mul-
tiple, concurrent emulations running side-by-side. This enables
analysis of game versions, sequels, localizations, and other poten-
tial comparative phenomena. The Indexer controls allow for the
same functionality for each emulated instance — save, load, and
video recording — with an additional provision for directing input
streams to subsets of the emulations. In the emulator windows of
the �gure, a scholar compares multiple modi�ed versions of Super
Mario Bros. with the original title in the top left position. (This
example is drawn from Shane Denson’s work in digital seriality [2]
and shows how GISST can �t into existing game studies work�ows.)

4 FUTUREWORK
GISST is a fully-functional prototype. It allows knowledgeable users
to explore the potential for tools of this type. But ideal future work
would include making the software robust enough and the interface
accessible enough for widespread use by game and software studies
scholars. It would also include the creation of communities for use
and upkeep of the software and its products.

Tools such as GISST open up numerous possibilities for the
dissemination and standardization of references to game studies
resources. For bibliographic references, all the information in a ref-
erence record could be exported to BibTeX or linked with scholarly
citation systems like Zotero. Executable references have informa-
tion about emulated execution embedded within their metadata,
allowing for more consistent analytical use of emulation in game

studies and potential future comparison of not only di�erent games
under emulation, but also di�erent emulators themselves.

Since the in-browser emulation is essentially a full computing
system running in a web page, its memory and operations are
totally available to introspection via other concurrent JavaScript
processes. Work is underway to include memory inspection and
manipulation functionality in the CiteState.js API, allowing for
future in-browser visualization of emulated games’ low-level run-
time behavior.

GISST’s focus on referential structures derives from its initial
focus on game citation management. Attempting to �nd a way to
cite games, performances, and game states, incidentally required
creating the technical means for those references, and �guring
out how those references could be made available and useful for
argumentation. This forced the conceptualization of new scholarly
expressions, and brought about the realization that the citation
apparatus was just the �rst step in the creation of a new class
of applications aimed at the needs of games and software studies
scholars. The components of GISST described in this abstract are
then a preface to a whole range of possible tools for game history,
game studies and software studies works.

5 ACKNOWLEDGMENTS
This work was made possible, in part, by Institute of Museum and
Library Services grant LG-06-13-0205-13.

REFERENCES
[1] 2017. Mupen64-Plus. (2017). https://github.com/mupen64plus
[2] Shane Denson. 2015. Digital Seriality. http://shanedenson.com/stu�/visualizing_

digital_seriality/digital-seriality.html. (2015).
[3] Valtteri Heikkil a. 2016. EM-FCEUX. (2016). https://bitbucket.org/tsone/em-fceux
[4] Eric Kaltman, Joseph Osborn, Noah Wardrip-Fruin, and Michael Mateas. 2017.

Getting the GISST: A Toolkit for the Creation, Analysis and Reference of Game
Studies Resources. In Proceedings of the 12th International Conference on the
Foundations of Digital Games. Hyannis, MA.

[5] tjwei. 2015. xnes. (2015). https://github.com/tjwei/xnes
[6] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings

of the ACM international conference companion on Object oriented programming
systems languages and applications companion. ACM, 301–312.

https://github.com/mupen64plus
http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html
http://shanedenson.com/stuff/visualizing_digital_seriality/digital-seriality.html
https://bitbucket.org/tsone/em-fceux
https://github.com/tjwei/xnes

	Abstract
	1 Introduction
	2 The Game and Interactive Software Toolkit
	2.1 GISST Command Line Interface
	2.2 CiteState.js
	2.3 GISST Web Application

	3 Use Cases
	3.1 Reference Creation and Sharing
	3.2 Unified Game Reference Database
	3.3 Comparative Analysis

	4 Future Work
	5 Acknowledgments
	References

